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Department of Mathematics

MATH2058 Honours Mathematical Analysis I
Suggested Solutions for HW1

Field Axioms of real number:

Al.
A2.
A3.
A4.
Ab5.
MI1.
M2.
M3.
M4.
Mb5.

a+beRifa,beR;

a+b=b+aif a,beR;
a+(b+c)=(a+b)+ceRifa,b,ceR;

There exists 0 € R such that a + 0 = a for all a € R;
For any a € R, there is b € R such that a + b = 0;
a-beRifabeR,

a-b=b-aifa,beR;
a-(b-c)=(a-b)-ceRifa,bceR;

There exists 1 € R\ {0} such that a-1 = a for all a € R;
For any a € R\ {0}, there is b € R such that a - b = 1;

D.a-(b+c¢)=a-b+a-cifa,b,ceR.

Order axioms of real number:

There is a nonempty subset P of R, called the set of positive real numbers, such that:
Ol. If a,b € P, then a + b € P.
02. If a,b € P, thena-beP.

03.

(Trichotomy property) If a € R, then exactly one of the following holds:

acelP, a=0, —acP.

1. Using the Axioms, show that

(a) for alla € R\ {0}, 1/(1/a) = a,
(b) fa>b>0,then 0 <a ' <bl
Solution. (a) We first show the uniqueness of multiplicative inverses given in

(M5). Let a € R\ {0}. Suppose both b,c € R such that a-b=1and a-c = 1.
We want to show that b = c.

b=">b-1 (M4)
=b-(a-c (assumption)
=(b-a)-c (M3)
=(a-b)-c (M2)
=1-c (assumption)
=c-1 (M2)
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1
Since multiplicative inverses are unique, we call it —. We now show that

a
1/(1/a) = a. Replacing a with 1/a, we know that 1/(1/a) is the multiplicative

inverse of 1/a, so we have

1 1
Ta
# (al%)
e (1)
()
()
=1-a
=a-1

as required.
(b) We first show the following:

(M4)

(M5)

=2 E

i. Uniqueness of additive inverse: Let a € R and suppose both b, c € R such
that a +b =0 and a + ¢ = 0. We want to show that b = c.

b=b+0
=b+(a+c)
=((b+a)+c
=(a+b) +c
=0+c
=c+0

= C.

(A4)
(assumption)
(A3)
(A2)
(assumption)

(A2)

Since additive inverses are unique, we call it —a.

ii. 0=a-0foralla eR:
0=a-0+(—a-0)
=a-(0+0)+(—a-0)
=a-0+a-0+(—a-0)
a-0
ili. a-(—1) = —afor all a € R:
0=a-0
= (14 (-1))
=a-14+a-(-1)
=a+a-(—1)

(A5, (i) above)
(A4)

(D)

(A5).

((ii) above)
(A5, (i) above)
(D)

(M4).

So a-(—1) is such that a +a- (—1) = 0, so by (i) above, a - (—1) = —a.
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iv. For any a € R, define a* := a - a. Then show that (—1)* = 1:

(—1)?=(-1)*+0 (A4)
=(-1)*+(-1)+1 (A5)
=(-1)-(-)+(-1)+1 (definition of square)
=(-1)- (=) +(-1)-1+1 (M4)
=(1)-(-D)+1)+1 (D)
=(-1)-(1+(-1)+1 (A2)
=(-1)-0+1 (A5)

1 )

Il
_ O
+

(A2,A4).

v. for all @ € R and a # 0, then a®> > 0: Since a # 0, by the Trichotomy
property, either a € P or —a € P. Then for the case where a € P, we have
a?> =a-a € P by Ol. For the case where —a € P, we have

(—a)® = (—a) - (—a) (definition of square)
=(a-(=1))(a-(-1)) ((iii) above)
=(a-(=1))-((-1)-a) (M2)
=a-((=1)-(=1))-a (M3)
=a-(-1)?-a (definition of square)
=a-1-a ((iv) above)

— a2. a ( )

and since (—a) € P, we see that a®> = (—a) - (—a) € P. Therefore, we have
that a® > 0.

vi. 1> 0: By (M4), we know that 1 # 0. We have

1=1-1 (M4)
=12 (definition of square)
>0 ((v) above).

vii. If a >band ¢ > 0,thenc-a > c-b,andifa > band ¢ <0, then c-a < c-b:
We know that @ > b means a 4+ (—b) € P, and ¢ > 0 means ¢ € P. So we

have
c-a+(—c-b)=c-a+((-1)-c-b) ((iii) above
=c-a+(c-b-(-1)) (M2 twice)
=c-a+(c-(-b)) ((iii) above)
=c-(a+(-b)) (D)

>0 (02).
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Now consider the case where a > b and ¢ < 0, that is, that —c € P. Then

we have
c-b+(—c-a)=(—c-a)+c-b (A2)
=(—c-a)+1-c-b (M2,M4)
=(—c-a)+(=1)*-c-b ((iv) above)
=(—c-a)+(=1)-(=1)-c-b (definition of square)
=(—c-a)+(=1)-(—c)-b ((iii) above)
= (—c-a)+((=¢)- (1) -b) (M2)
=(—¢)-a+ ((—¢c)-b-(-1)) (M2,M3 above)
=(—c)-a+ ((—c)-(=b)) ((iii) above
= (—¢) - (a+(=b)) (D)
>0 (02).

viii. If @ > 0, then 1/a > 0: If @ > 0, then by the Trichotomy property, a # 0,
therefore, 1/a exists. Suppose that 1/a = 0, then

1
l=a-- M5
a (\5)
=a-0 (by assumption)
=0 ((ii) above)

a contradiction. On the other hand, suppose that 1/a < 0, then

Q|-

(M5)

l=a-
<0 ((vii) above)

which contradicts (vi) above.

Finally we are able to show the main result, which is that if @ > b > 0, then
0 <a ! < b, where we understand a™! to be another notation for 1/a. By
(viii) above, we see that both a1, 6= > 0. We have:

O<b<a = 0-b'<b-bl<a b ((vii) above)
— 0<l<a-b! ((ii) above, M5)
— a ' 0<all<ala-b! (((vii) above)
— 0<a'b? (M4, M5, M2)

as required.

<

2. If A is a non-empty subset of R such that A is bounded from above. If we denote
—A ={—a:a€ A}, show that inf(—A) exists and equals to — sup A.

Solution. Since A is non-empty and bounded from above, the set — A is non-empty
and bounded from below. Hence, by the completeness of R, inf(—A) exists.
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It remains to show that inf(—A) = —sup A. Let u = sup A. We want to show that
—u = inf(—A).

Lower bound: Since u = sup A, we know that a < u for all a € A. Multiplying by
—1, we see that —u < —a for each a € A and hence —u is a lower bound of —A.

Greatest lower bound property: Let v be a lower bound of —A. Then for any
b e —A, we know that v < b. Note that —b € A, so multiplying by —1 we see that
—b < —wv. Since u is the supremum of A, we have that —b < u < —v. Multiplying
again by —1 we have v < —u < b as required. |

3. Show that if A, B are bounded subset of R. Show that
sup(A+ B) =sup A+ sup B
where A+ B={a+b:a€ Abe B}. Do we have
sup A - sup B = sup(4 - B)

where A- B = {ab:a € A,b e B}? Justify your answer.

Solution. We will show that sup(A + B) < sup A + sup B and sup A + sup B <
sup(A + B).

sup(A+ B) < supA+supB: let a € A and b € B. We know that a < sup A and
b < sup B, so adding these two inequalities together we have a +b < sup A+ sup B.
Since a and b were arbitrary, the element a + b was arbitrarily chosen and so the
number sup A+sup B is an upper bound of A+ B. Hence sup(A+B) < sup A+sup B.

sup A+sup B <sup(A+ B): let a € A. Then for allb € B, a+b € A+ B and we
know that a+b < sup(A+ B) = b < sup(A+ B) — a. Since this inequality holds
for all b € B, this means the number sup(A+ B) — a is an upper bound of the set B,
hence we have sup B < sup(A+ B)—a. Rearranging gives us a < sup(A+B)—sup B.
Since a was chosen arbitrarily, this means the number sup(A + B) — sup B is an
upper bound for the set A and we have sup(A) < sup(A+ B) —sup B. Rearranging
the inequality gives the result.

No, we do not have sup A-sup B = sup(A- B). Consider A = {—1,1}, B = {-2,1}.
Then sup A = 1,sup B = 1, but sup(A - B) = 2. <

4. Let X be a non-empty set and f,g : X — R be two real valued function with
bounded ranges. Show that

sup{f(z) + g(z) :z € X} <sup{f(z): 2z € X} +sup{g(z) : z € X}.

Give an example showing that the inequality can be a strict inequality.

Solution. Since f,g have bounded ranges in R, the supremums exist. Let u =
sup{f(x) : x € X} and v = sup{g(z) : « € X}. Then for all x € X, f(z) < u and
g(x) <wv. Adding these two inequalities together, we have

f(@)+g(z) <u+tv
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and hence u + v is an upper bound of the set {f(x) + g(z) : * € X}. Then by
definition of supremum, we have

sup{f(z) +g(x) :x € X} <u+v=sup{f(x): 2z € X} +sup{g(x):x € X}

as required.

For the example of strict inequality, consider X = [—1,1] and set f(z) =z, g(x) =
—x. Then f(x)+ g(z) =0, so sup{f(z) + g(z) : z € X} =0, while sup{f(z) : z €
X} =1and sup{g(z) : z € X} =1 and so sup{f(z) : z € X} + sup{g(x) : = €
X} =2 <

. Show by using completeness that there is € R so that x > 0 and 2*+2 = 5. Show
that such x is unique.

Solution. Let S := {s € R: s>+ s < 5}. Since 1 € S, S is not empty. Moreover,
S is bounded from above by 5. So by the completeness of R, sup .S exists in R and
moreover, x :=supS > 1> 0.

Suppose 2% + x < 5. Then by assumption, 5 — 2% — 2 > 0 and since > 0, we also
have 322 + 3z + 2 > 0. Then by the Archimedean property, we can find an n € N

such that

1 5—a3—x

- .
n  3r2+3x+2

1 1 1 1
Then Since—3 <—, <= and since z > 0, we have
n n'n n
1\* 1 , 327 3z 1 1
rT+—| tlrt— | ="+ ——+ 5+ = +T+ -
n n n n n n
3 322 3z 1 1
<+ —+—+—+v+ -
n noon n
1
:x3+x+—(3m2+3x+2)
n
5—a3—x
3 2
< —— ] (3 3 2) = 5.
g +x+<3x2—|—3:p+2)(x +32+2)

So (x + %) € S, which contradicts the fact that = is an upper bound of S. Hence
2% +x < 5 is not possible.

Suppose on the other hand that 2% 4+ x > 5. Then by assumption, 23 + 2 —5 > 0
and since z > 0, we also have 322 + 2 > 0. Then by the Archimedean property, we
can find an m € N such that

1 23+2-5
<—
m 32 +2
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. 1 .
Then since — < — and since z > 0, we have

m3 ~ m
’ 1 s 322 3x 1 1
r—— ) +(la——)=P -+ -~ pa——
m m m m2  m3 m
3 R 1 1
>edttr— - = —
m m m
3 322 2
> +r—— — —
m m

=x3+x—l(3x2+2)
m

3

3 »”+x—5 9

> — | — ] (3 2) = 5.
S ( 312 + 2 )($+ )

So (ac — %) is an upper bound of S, which contradicts the fact that x is the least
upper bound of S. Hence 23 4+ z > 5 is not possible.
So we have that 23 + x = 5.

For uniqueness, suppose there is a y # x such that y® +y = 5. Then we have

0=5-5
=2’ +r—y"—y
::vg—y3+x—y
= (z—y)@* +ay —y*) + (z —y)
= (z—y)(@” +ay —y* +1).
So either x —y =0 or 2? + 2y —y?>+1 = 0. If z —y = 0, then we would have x = y,

a contradiction, and we are done. On the other hand, suppose 22 +xy —y?> +1 = 0.
The left hand side is a polynomial in x with determinant

A=572+4>0,y€eR

and so 2% + 2y — y? + 1 = 0 admits no real solutions. <



