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Field Axioms of real number:

A1. a+ b ∈ R if a, b ∈ R;
A2. a+ b = b+ a if a, b ∈ R;
A3. a+ (b+ c) = (a+ b) + c ∈ R if a, b, c ∈ R;
A4. There exists 0 ∈ R such that a+ 0 = a for all a ∈ R;
A5. For any a ∈ R, there is b ∈ R such that a+ b = 0;

M1. a · b ∈ R if a, b ∈ R;
M2. a · b = b · a if a, b ∈ R;
M3. a · (b · c) = (a · b) · c ∈ R if a, b, c ∈ R;
M4. There exists 1 ∈ R \ {0} such that a · 1 = a for all a ∈ R;
M5. For any a ∈ R \ {0}, there is b ∈ R such that a · b = 1;

D. a · (b+ c) = a · b+ a · c if a, b, c ∈ R.
Order axioms of real number:

There is a nonempty subset P of R, called the set of positive real numbers, such that:

O1. If a, b ∈ P, then a+ b ∈ P.
O2. If a, b ∈ P, then a · b ∈ P.
O3. (Trichotomy property) If a ∈ R, then exactly one of the following holds:

a ∈ P, a = 0, −a ∈ P.

1. Using the Axioms, show that

(a) for all a ∈ R \ {0}, 1/(1/a) = a,

(b) If a > b > 0, then 0 < a−1 < b−1.

Solution. (a) We first show the uniqueness of multiplicative inverses given in
(M5). Let a ∈ R \ {0}. Suppose both b, c ∈ R such that a · b = 1 and a · c = 1.
We want to show that b = c.

b = b · 1 (M4)

= b · (a · c) (assumption)

= (b · a) · c (M3)

= (a · b) · c (M2)

= 1 · c (assumption)

= c · 1 (M2)

= c (M4).
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Since multiplicative inverses are unique, we call it
1

a
. We now show that

1/(1/a) = a. Replacing a with 1/a, we know that 1/(1/a) is the multiplicative
inverse of 1/a, so we have

1

1/a
=

1

1/a
· 1 (M4)

=
1

1/a
·
(
a · 1

a

)
(M5)

=
1

1/a
·
(
1

a
· a

)
(M2)

=

(
1

1/a
· 1
a

)
· a (M3)

=

(
1

a
· 1

1/a

)
· a (M2)

= 1 · a (M5)

= a · 1 (M2)

= a (M4)

as required.

(b) We first show the following:

i. Uniqueness of additive inverse: Let a ∈ R and suppose both b, c ∈ R such
that a+ b = 0 and a+ c = 0. We want to show that b = c.

b = b+ 0 (A4)

= b+ (a+ c) (assumption)

= (b+ a) + c (A3)

= (a+ b) + c (A2)

= 0 + c (assumption)

= c+ 0 (A2)

= c.

Since additive inverses are unique, we call it −a.

ii. 0 = a · 0 for all a ∈ R:

0 = a · 0 + (−a · 0) (A5, (i) above)

= a · (0 + 0) + (−a · 0) (A4)

= a · 0 + a · 0 + (−a · 0) (D)

= a · 0 (A5).

iii. a · (−1) = −a for all a ∈ R:

0 = a · 0 ((ii) above)

= a · (1 + (−1)) (A5, (i) above)

= a · 1 + a · (−1) (D)

= a+ a · (−1) (M4).

So a · (−1) is such that a+ a · (−1) = 0, so by (i) above, a · (−1) = −a.
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iv. For any a ∈ R, define a2 := a · a. Then show that (−1)2 = 1:

(−1)2 = (−1)2 + 0 (A4)

= (−1)2 + (−1) + 1 (A5)

= (−1) · (−1) + (−1) + 1 (definition of square)

= (−1) · (−1) + (−1) · 1 + 1 (M4)

= (−1) · ((−1) + 1) + 1 (D)

= (−1) · (1 + (−1)) + 1 (A2)

= (−1) · 0 + 1 (A5)

= 0 + 1 ((ii) above)

= 1 (A2,A4).

v. for all a ∈ R and a ̸= 0, then a2 > 0: Since a ̸= 0, by the Trichotomy
property, either a ∈ P or −a ∈ P. Then for the case where a ∈ P, we have
a2 = a · a ∈ P by O1. For the case where −a ∈ P, we have

(−a)2 = (−a) · (−a) (definition of square)

= (a · (−1)) · (a · (−1)) ((iii) above)

= (a · (−1)) · ((−1) · a) (M2)

= a · ((−1) · (−1)) · a (M3)

= a · (−1)2 · a (definition of square)

= a · 1 · a ((iv) above)

= a · a (M4)

= a2

and since (−a) ∈ P, we see that a2 = (−a) · (−a) ∈ P. Therefore, we have
that a2 > 0.

vi. 1 > 0: By (M4), we know that 1 ̸= 0. We have

1 = 1 · 1 (M4)

= 12 (definition of square)

> 0 ((v) above).

vii. If a > b and c > 0, then c ·a > c · b, and if a > b and c < 0, then c ·a < c · b:
We know that a > b means a + (−b) ∈ P, and c > 0 means c ∈ P. So we
have

c · a+ (−c · b) = c · a+ ((−1) · c · b) ((iii) above

= c · a+ (c · b · (−1)) (M2 twice)

= c · a+ (c · (−b)) ((iii) above)

= c · (a+ (−b)) (D)

> 0 (O2).
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Now consider the case where a > b and c < 0, that is, that −c ∈ P. Then
we have

c · b+ (−c · a) = (−c · a) + c · b (A2)

= (−c · a) + 1 · c · b (M2,M4)

= (−c · a) + (−1)2 · c · b ((iv) above)

= (−c · a) + (−1) · (−1) · c · b (definition of square)

= (−c · a) + (−1) · (−c) · b ((iii) above)

= (−c · a) + ((−c) · (−1) · b) (M2)

= (−c) · a+ ((−c) · b · (−1)) (M2,M3 above)

= (−c) · a+ ((−c) · (−b)) ((iii) above

= (−c) · (a+ (−b)) (D)

> 0 (O2).

viii. If a > 0, then 1/a > 0: If a > 0, then by the Trichotomy property, a ̸= 0,
therefore, 1/a exists. Suppose that 1/a = 0, then

1 = a · 1
a

(M5)

= a · 0 (by assumption)

= 0 ((ii) above)

a contradiction. On the other hand, suppose that 1/a < 0, then

1 = a · 1
a

(M5)

< 0 ((vii) above)

which contradicts (vi) above.

Finally we are able to show the main result, which is that if a > b > 0, then
0 < a−1 < b−1, where we understand a−1 to be another notation for 1/a. By
(viii) above, we see that both a−1, b−1 > 0. We have:

0 < b < a =⇒ 0 · b−1 < b · b−1 < a · b−1 ((vii) above)

=⇒ 0 < 1 < a · b−1 ((ii) above, M5)

=⇒ a−1 · 0 < a−1 · 1 < a−1 · a · b−1 (((vii) above)

=⇒ 0 < a−1b−1 (M4, M5, M2)

as required.

◀

2. If A is a non-empty subset of R such that A is bounded from above. If we denote
−A = {−a : a ∈ A}, show that inf(−A) exists and equals to − supA.

Solution. Since A is non-empty and bounded from above, the set −A is non-empty
and bounded from below. Hence, by the completeness of R, inf(−A) exists.
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It remains to show that inf(−A) = − supA. Let u = supA. We want to show that
−u = inf(−A).

Lower bound: Since u = supA, we know that a ≤ u for all a ∈ A. Multiplying by
−1, we see that −u ≤ −a for each a ∈ A and hence −u is a lower bound of −A.

Greatest lower bound property: Let v be a lower bound of −A. Then for any
b ∈ −A, we know that v ≤ b. Note that −b ∈ A, so multiplying by −1 we see that
−b ≤ −v. Since u is the supremum of A, we have that −b ≤ u ≤ −v. Multiplying
again by −1 we have v ≤ −u ≤ b as required. ◀

3. Show that if A,B are bounded subset of R. Show that

sup(A+B) = supA+ supB

where A+B = {a+ b : a ∈ A, b ∈ B}. Do we have

supA · supB = sup(A ·B)

where A ·B = {ab : a ∈ A, b ∈ B}? Justify your answer.

Solution. We will show that sup(A + B) ≤ supA + supB and supA + supB ≤
sup(A+B).

sup(A + B) ≤ supA + supB: let a ∈ A and b ∈ B. We know that a ≤ supA and
b ≤ supB, so adding these two inequalities together we have a+ b ≤ supA+supB.
Since a and b were arbitrary, the element a + b was arbitrarily chosen and so the
number supA+supB is an upper bound ofA+B. Hence sup(A+B) ≤ supA+supB.

supA+ supB ≤ sup(A+B): let a ∈ A. Then for all b ∈ B, a+ b ∈ A+B and we
know that a+ b ≤ sup(A+B) =⇒ b ≤ sup(A+B)−a. Since this inequality holds
for all b ∈ B, this means the number sup(A+B)−a is an upper bound of the set B,
hence we have supB ≤ sup(A+B)−a. Rearranging gives us a ≤ sup(A+B)−supB.
Since a was chosen arbitrarily, this means the number sup(A + B) − supB is an
upper bound for the set A and we have sup(A) ≤ sup(A+B)− supB. Rearranging
the inequality gives the result.

No, we do not have supA · supB = sup(A ·B). Consider A = {−1, 1}, B = {−2, 1}.
Then supA = 1, supB = 1, but sup(A ·B) = 2. ◀

4. Let X be a non-empty set and f, g : X → R be two real valued function with
bounded ranges. Show that

sup{f(x) + g(x) : x ∈ X} ≤ sup{f(x) : x ∈ X}+ sup{g(x) : x ∈ X}.

Give an example showing that the inequality can be a strict inequality.

Solution. Since f, g have bounded ranges in R, the supremums exist. Let u =
sup{f(x) : x ∈ X} and v = sup{g(x) : x ∈ X}. Then for all x ∈ X, f(x) ≤ u and
g(x) ≤ v. Adding these two inequalities together, we have

f(x) + g(x) ≤ u+ v
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and hence u + v is an upper bound of the set {f(x) + g(x) : x ∈ X}. Then by
definition of supremum, we have

sup{f(x) + g(x) : x ∈ X} ≤ u+ v = sup{f(x) : x ∈ X}+ sup{g(x) : x ∈ X}

as required.

For the example of strict inequality, consider X = [−1, 1] and set f(x) = x, g(x) =
−x. Then f(x) + g(x) = 0, so sup{f(x) + g(x) : x ∈ X} = 0, while sup{f(x) : x ∈
X} = 1 and sup{g(x) : x ∈ X} = 1 and so sup{f(x) : x ∈ X} + sup{g(x) : x ∈
X} = 2. ◀

5. Show by using completeness that there is x ∈ R so that x > 0 and x3+x = 5. Show
that such x is unique.

Solution. Let S := {s ∈ R : s3 + s < 5}. Since 1 ∈ S, S is not empty. Moreover,
S is bounded from above by 5. So by the completeness of R, supS exists in R and
moreover, x := supS ≥ 1 > 0.

Suppose x3 + x < 5. Then by assumption, 5− x3 − x > 0 and since x > 0, we also
have 3x2 + 3x + 2 > 0. Then by the Archimedean property, we can find an n ∈ N
such that

1

n
<

5− x3 − x

3x2 + 3x+ 2
.

Then since
1

n3
≤ 1

n
,
1

n2
≤ 1

n
and since x > 0, we have

(
x+

1

n

)3

+

(
x+

1

n

)
= x3 +

3x2

n
+

3x

n2
+

1

n3
+ x+

1

n

≤ x3 +
3x2

n
+

3x

n
+

1

n
+ x+

1

n

= x3 + x+
1

n

(
3x2 + 3x+ 2

)
< x3 + x+

(
5− x3 − x

3x2 + 3x+ 2

)(
3x2 + 3x+ 2

)
= 5.

So
(
x+ 1

n

)
∈ S, which contradicts the fact that x is an upper bound of S. Hence

x3 + x < 5 is not possible.

Suppose on the other hand that x3 + x > 5. Then by assumption, x3 + x − 5 > 0
and since x > 0, we also have 3x2 + 2 > 0. Then by the Archimedean property, we
can find an m ∈ N such that

1

m
<

x3 + x− 5

3x2 + 2
.
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Then since
1

m3
≤ 1

m
and since x > 0, we have

(
x− 1

m

)3

+

(
x− 1

m

)
= x3 − 3x2

m
+

3x

m2
− 1

m3
+ x− 1

m

> x3 + x− 3x2

m
− 1

m
− 1

m3

≥ x3 + x− 3x2

m
− 2

m

= x3 + x− 1

m

(
3x2 + 2

)
> x3 + x−

(
x3 + x− 5

3x2 + 2

)(
3x2 + 2

)
= 5.

So
(
x− 1

m

)
is an upper bound of S, which contradicts the fact that x is the least

upper bound of S. Hence x3 + x > 5 is not possible.

So we have that x3 + x = 5.

For uniqueness, suppose there is a y ̸= x such that y3 + y = 5. Then we have

0 = 5− 5

= x3 + x− y3 − y

= x3 − y3 + x− y

= (x− y)(x2 + xy − y2) + (x− y)

= (x− y)(x2 + xy − y2 + 1).

So either x− y = 0 or x2+xy− y2+1 = 0. If x− y = 0, then we would have x = y,
a contradiction, and we are done. On the other hand, suppose x2+xy− y2+1 = 0.
The left hand side is a polynomial in x with determinant

∆ = 5y2 + 4 > 0, y ∈ R

and so x2 + xy − y2 + 1 = 0 admits no real solutions. ◀


